Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Med (Lausanne) ; 9: 1096900, 2022.
Article in English | MEDLINE | ID: covidwho-2294040

ABSTRACT

Hemophagocytic lymphohistiocytosis may occur in patients with genetic predisposition and in sporadic cases due to malignancy or infection. We describe a 49-year old man with hemorrhagic fever, type 1 respiratory insufficiency and acute kidney injury. Diagnostic work up showed a hyperinflammatory syndrome, hypertriglyceridemia, hemophagocytosis, very high ferritin and significantly elevated sCD25. The findings were compatible with hemophagocytic lymphohistiocytosis based on the HLH-2004 criteria. Serological testing indentified Puumala virus as the causal pathogen. The patient was successfully treated with pulse corticosteroids, intravenous immunoglobins and supportive therapy.

3.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1376571

ABSTRACT

BACKGROUND: Several randomised clinical trials have studied convalescent plasma for coronavirus disease 2019 (COVID-19) using different protocols, with different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibody titres, at different time-points and severities of illness. METHODS: In the prospective multicentre DAWn-plasma trial, adult patients hospitalised with COVID-19 were randomised to 4 units of open-label convalescent plasma combined with standard of care (intervention group) or standard of care alone (control group). Plasma from donors with neutralising antibody titres (50% neutralisation titre (NT50)) ≥1/320 was the product of choice for the study. RESULTS: Between 2 May 2020 and 26 January 2021, 320 patients were randomised to convalescent plasma and 163 patients to the control group according to a 2:1 allocation scheme. A median (interquartile range) volume of 884 (806-906) mL) convalescent plasma was administered and 80.68% of the units came from donors with neutralising antibody titres (NT50) ≥1/320. Median time from onset of symptoms to randomisation was 7 days. The proportion of patients alive and free of mechanical ventilation on day 15 was not different between both groups (convalescent plasma 83.74% (n=267) versus control 84.05% (n=137)) (OR 0.99, 95% CI 0.59-1.66; p=0.9772). The intervention did not change the natural course of antibody titres. The number of serious or severe adverse events was similar in both study arms and transfusion-related side-effects were reported in 19 out of 320 patients in the intervention group (5.94%). CONCLUSIONS: Transfusion of 4 units of convalescent plasma with high neutralising antibody titres early in hospitalised COVID-19 patients did not result in a significant improvement of clinical status or reduced mortality.


Subject(s)
Antibodies, Viral/blood , COVID-19 , Immunization, Passive , Adult , Antibodies, Neutralizing/blood , COVID-19/therapy , Hospitalization , Humans , Prospective Studies , Treatment Outcome , COVID-19 Serotherapy
4.
Microorganisms ; 9(7)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1323313

ABSTRACT

BACKGROUND: Voriconazole is one of the first-line therapies for invasive pulmonary aspergillosis. Drug concentrations might be significantly influenced by the use of extracorporeal membrane oxygenation (ECMO). We aimed to assess the effect of ECMO on voriconazole exposure in a large patient population. METHODS: Critically ill patients from eight centers in four countries treated with voriconazole during ECMO support were included in this retrospective study. Voriconazole concentrations were collected in a period on ECMO and before/after ECMO treatment. Multivariate analyses were performed to evaluate the effect of ECMO on voriconazole exposure and to assess the impact of possible saturation of the circuit's binding sites over time. RESULTS: Sixty-nine patients and 337 samples (190 during and 147 before/after ECMO) were analyzed. Subtherapeutic concentrations (<2 mg/L) were observed in 56% of the samples during ECMO and 39% without ECMO (p = 0.80). The median trough concentration, for a similar daily dose, was 2.4 (1.2-4.7) mg/L under ECMO and 2.5 (1.4-3.9) mg/L without ECMO (p = 0.58). Extensive inter-and intrasubject variability were observed. Neither ECMO nor squared day of ECMO (saturation) were retained as significant covariates on voriconazole exposure. CONCLUSIONS: No significant ECMO-effect was observed on voriconazole exposure. A large proportion of patients had voriconazole subtherapeutic concentrations.

5.
Crit Care ; 24(1): 642, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-916979

ABSTRACT

BACKGROUND: Invasive pulmonary aspergillosis (IPA) is an increasingly recognized complication in intensive care unit (ICU) patients, especially those with influenza, cirrhosis, chronic obstructive pulmonary disease, and other diseases. The diagnosis can be challenging, especially in the ICU, where clinical symptoms as well as imaging are mostly nonspecific. Recently, Aspergillus lateral flow tests were developed to decrease the time to diagnosis of IPA. Several studies have shown promising results in bronchoalveolar lavage fluid (BALf) from hematology patients. We therefore evaluated a new lateral flow test for IPA in ICU patients. METHODS: Using left-over BALf from adult ICU patients in two university hospitals, we studied the performance of the Aspergillus galactomannan lateral flow assay (LFA) by IMMY (Norman, OK, USA). Patients were classified according to the 2008 EORTC-MSG definitions, the AspICU criteria, and the modified AspICU criteria, which incorporate galactomannan results. These internationally recognized consensus definitions for the diagnosis of IPA incorporate patient characteristics, microbiology and radiology. The LFA was read out visually and with a digital reader by researchers blinded to the final clinical diagnosis and IPA classification. RESULTS: We included 178 patients, of which 55 were classified as cases (6 cases of proven and 26 cases of probable IPA according to the EORTC-MSG definitions, and an additional 23 cases according to the modified AspICU criteria). Depending on the definitions used, the sensitivity of the LFA was 0.88-0.94, the specificity was 0.81, and the area under the ROC curve 0.90-0.94, indicating good overall test performance. CONCLUSIONS: In ICU patients, the LFA performed well on BALf and can be used as a rapid screening test while waiting for other microbiological results.


Subject(s)
Diagnostic Techniques and Procedures/standards , Invasive Pulmonary Aspergillosis/diagnosis , Aged , Belgium/epidemiology , Diagnostic Techniques and Procedures/statistics & numerical data , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Invasive Pulmonary Aspergillosis/epidemiology , Male , Middle Aged , Netherlands/epidemiology , Point-of-Care Testing , ROC Curve , Sensitivity and Specificity , Time Factors
7.
Trials ; 21(1): 981, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-947944

ABSTRACT

BACKGROUND: The COVID-19 pandemic has imposed an enormous burden on health care systems around the world. In the past, the administration of convalescent plasma of patients having recovered from SARS and severe influenza to patients actively having the disease showed promising effects on mortality and appeared safe. Whether or not this also holds true for the novel SARS-CoV-2 virus is currently unknown. METHODS: DAWn-Plasma is a multicentre nation-wide, randomized, open-label, phase II proof-of-concept clinical trial, evaluating the clinical efficacy and safety of the addition of convalescent plasma to the standard of care in patients hospitalized with COVID-19 in Belgium. Patients hospitalized with a confirmed diagnosis of COVID-19 are eligible when they are symptomatic (i.e. clinical or radiological signs) and have been diagnosed with COVID-19 in the 72 h before study inclusion through a PCR (nasal/nasopharyngeal swab or bronchoalveolar lavage) or a chest-CT scan showing features compatible with COVID-19 in the absence of an alternative diagnosis. Patients are randomized in a 2:1 ratio to either standard of care and convalescent plasma (active treatment group) or standard of care only. The active treatment group receives 2 units of 200 to 250 mL of convalescent plasma within 12 h after randomization, with a second administration of 2 units 24 to 36 h after ending the first administration. The trial aims to include 483 patients and will recruit from 25 centres across Belgium. The primary endpoint is the proportion of patients that require mechanical ventilation or have died at day 15. The main secondary endpoints are clinical status on day 15 and day 30 after randomization, as defined by the WHO Progression 10-point ordinal scale, and safety of the administration of convalescent plasma. DISCUSSION: This trial will either provide support or discourage the use of convalescent plasma as an early intervention for the treatment of hospitalized patients with COVID-19 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT04429854 . Registered on 12 June 2020 - Retrospectively registered.


Subject(s)
Antibodies, Viral/immunology , COVID-19/therapy , SARS-CoV-2/genetics , Adult , Antibodies, Viral/blood , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Combined Modality Therapy/methods , Female , Global Burden of Disease , Hospitalization/trends , Humans , Immunization, Passive/methods , Male , Mortality , Respiration, Artificial/statistics & numerical data , SARS-CoV-2/immunology , Safety , Standard of Care/statistics & numerical data , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL